Indexing and Comparison of Multi-Dimensional Entities in a Recommender System based on Ontological Approach
نویسندگان
چکیده
The paper describes an application of indexing—the technology currently widely used for processing and comparing textual information—to multi-dimensional entities of knowledge domains. We propose a model for building a frame-based ontology, which contains a domain conceptual model as well as a controlled vocabulary of “base terms” used for indexing. Further, the ontology constitutes the structure for the knowledge base of the recommender system developed by us, whose task is to support humancomputer interaction in web applications. The system automatically represents the interaction task being solved as a structured set of base terms, and compares it with the pre-indexed design guidelines representing practical knowledge of the domain. The interaction task context is defined by input data: 1) semi-structured attributes of target users and 2) natural-language requirements for a particular web application. The former are processed mostly via production model rules stored in the knowledge base, while the requirement text is mined for base terms from the controlled vocabulary. As a result of the comparison, the system provides a set of guidelines relevant for a particular interaction task context, seeking to save work effort of interface designers. Also, the proposed approach for indexing multi-dimensional entities can be applied in various recommender and knowledge-based systems.
منابع مشابه
An ontological hybrid recommender system for dealing with cold start problem
Recommender Systems ( ) are expected to suggest the accurate goods to the consumers. Cold start is the most important challenge for RSs. Recent hybrid s combine and . We introduce an ontological hybrid RS where the ontology has been employed in its part while improving the ontology structure by its part. In this paper, a new hybrid approach is proposed based on the combination of demog...
متن کاملیک روش مبتنی بر خوشهبندی سلسلهمراتبی تقسیمکننده جهت شاخصگذاری اطلاعات تصویری
It is conventional to use multi-dimensional indexing structures to accelerate search operations in content-based image retrieval systems. Many efforts have been done in order to develop multi-dimensional indexing structures so far. In most practical applications of image retrieval, high-dimensional feature vectors are required, but current multi-dimensional indexing structures lose their effici...
متن کاملA New WordNet Enriched Content-Collaborative Recommender System
The recommender systems are models that are to predict the potential interests of users among a number of items. These systems are widespread and they have many applications in real-world. These systems are generally based on one of two structural types: collaborative filtering and content filtering. There are some systems which are based on both of them. These systems are named hybrid recommen...
متن کاملEvaluation of recommender systems: A multi-criteria decision making approach
The evaluation and selection of recommender systems is a difficult decision making process. This difficulty is partially due to the large diversity of published evaluation criteria in addition to lack of standardized methods of evaluation. As such, a systematic methodology is needed that explicitly considers multiple, possibly conflicting metrics and assists decision makers to evaluate and find...
متن کاملMerging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems
In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...
متن کامل